Search results for "Nod1 Signaling Adaptor Protein"

showing 2 items of 2 documents

Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression.

2017

Toll-like receptors (TLRs) and nucleotide-binding oligomerisation domain (NOD)-like receptors (NLRs) are two major forms of innate immune sensors but their role in the immunopathology of stable chronic obstructive pulmonary disease (COPD) is incompletely studied. Our objective here was to investigate TLR and NLR signalling pathways in the bronchial mucosa in stable COPD.Using immunohistochemistry, the expression levels of TLR2, TLR4, TLR9, NOD1, NOD2, CD14, myeloid differentiation primary response gene 88 (MyD88), Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP), and the interleukin-1 receptor-associated kinases phospho-IRAK1 and IRAK4 were measured in the bronchial muc…

0301 basic medicineTIRAPMaleRespiratory SystemVital CapacityHAEMOPHILUS-INFLUENZAELUNG MICROBIOMEPathogenesisPulmonary Disease Chronic Obstructive0302 clinical medicineNOD2ImmunopathologyForced Expiratory VolumeNod1 Signaling Adaptor ProteinNOD1PhosphorylationCOPDSmoking11 Medical And Health SciencesMiddle AgedCPG-DNAbronchial inflammationAnti-Bacterial AgentsStreptococcus pneumoniaePseudomonas aeruginosaMOUSE LUNGFemaleLife Sciences & BiomedicineMoraxella catarrhalisSignal TransductionEXPRESSIONPulmonary and Respiratory MedicineCD14BronchiRespiratory MucosaReal-Time Polymerase Chain ReactionOBSTRUCTIVE PULMONARY-DISEASETLRs NLR bronchial inflammationNLRDENDRITIC CELL SUBSETS03 medical and health sciencesProtein DomainsmedicineHumansTLRsAgedTOLL-LIKE RECEPTORSCOPD TLR4InflammationScience & TechnologyBacteriabusiness.industrymedicine.diseaseHaemophilus influenzaeBacterial Loadrespiratory tract diseasesToll-Like Receptor 4TLR2030104 developmental biology030228 respiratory systemImmunologyINNATE IMMUNITYT-CELLSbusinessThe European respiratory journal
researchProduct

Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence…

2011

Abstract Background Several polymorphisms of genes involved in the immunological recognition of Helicobacter pylori and regulating apoptosis and proliferation have been linked to gastric carcinogenesis, however reported data are partially conflicting. The aim of our study was to evaluate potential associations between the presence of gastric cancer (GC) and high risk atrophic gastritis (HRAG) and polymorphisms of genes encoding Angiotensin converting enzyme (ACE), Nod-like receptor 1 (NOD1), Toll-like receptor 4 (TLR4) and FAS/FASL. Methods Gene polymorphisms were analyzed in 574 subjects (GC: n = 114; HRAG: n = 222, controls: n = 238) of Caucasian origin. ACE I/D (rs4646994), NOD1 796G>…

AdultGastritis AtrophicMaleFas Ligand ProteinGenotypeAtrophic gastritisPeptidyl-Dipeptidase AWhite PeopleFas ligandHelicobacter InfectionsRisk FactorsStomach NeoplasmsNod1 Signaling Adaptor ProteinNOD1GenotypemedicineGeneticsHumansGenetics(clinical)fas ReceptorAllelesGenetics (clinical)AgedAged 80 and overPolymorphism GeneticHelicobacter pyloribiologyCancerAngiotensin-converting enzymeMiddle AgedHelicobacter pylorimedicine.diseasebiology.organism_classificationToll-Like Receptor 4ApoptosisImmunologybiology.proteinFemalePrecancerous ConditionsResearch ArticleBMC Medical Genetics
researchProduct